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Summary 

A shaping f i l t e r  is a l i n e a r  system which transforms s ta t ionary  

white noise i n t o  a possibly nonstationary random process having a given 

covariance r ( t ,T) .  

a t e l y  defined, may be determined by’inspection of r ( t ,T)  

defined in  the  sense t h a t  any square-integrable input produces a bouiided 

output (abbreviated L21BO) 

We show t h a t  s t a b i l i t y  of a shaping f i l t e r ,  appropri- 

S t a b i l i t y  i s  

The following r e s u l t s  a r e  proved: 

1. 

.if 

(perhaps -0) 

‘2. If r(t,t) 5 C 

3. (Converse to  2) 

control lable ,  L21B0 s t a b i l i t y  implies t h a t  r ( t , t )  1. C 

A system with impulse response h(t,T) is L21B0 s t ab le  i f  and only 
t 

h2(t,?)d? S C < - for all t 2 to; to is a f ixed i n i t i a l  time 

f o r  all t 2 to, the shaping f i l t e r  is L21B0 s tab le .  

If t h e  shaping f i l t e r  i s  (uniformly) completely 

a for -0 (I) 

< t  st. 
0 

Also included i n  the  hypotheses of  3 i s  an assunption t o  the  e f f e c t  

that t h e  system is  in t e rna l ly  l inear .  The r e s u l t s  of the paper apply 

to  d i s t r ibu ted  as  w e l l  a s  lumped systems. 

h p u l s e  response (or  s ta te-var iable  equations) i s  not  required. 

Detailed knowledge of the  
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Stability Properties of Shaping Filters 

It is often of interest for various signal processing applications 
to determine a stable shaping filter for a covariance function r(t, 71, 
i.e., to determine a stable linear system that transforms stationary 
white noise into a random process having the convariance r(t, T )  

[I], 121. We show here that stability of a shaping filter, appropriately 
defined, may be determined by inspection of the covariance, provided 
that a shaping 6lter for r(t, T) is known to exist. 

Let y(t) for - m 5 to 5 t < OD be a zero-mean, possibly non- 
stationary random process with covariance 

t o ,  zo) + J: W ,  x)o(x) d i ,  for t 2 to, 

0, for t < to. 
Y(t) = (2) 

The function ~ ( x )  represents a stationary white noise input. The 
pemrn&@r zc msiime9 the values of intial conditions within the 
shaping filter, generally random variables uncorrelated with @(A), 
and may be regarded the value of a state variable a t  t = to. The 
“transient response” f ( t ,  to,  $0) represents the output effect of the 
internal initial conditions. 

An elementary but important consequence of (1) and (2) is that 

E[Y(t)Y(.r)l = 7) 

min ( t , r )  
. defined everywhere; i.e., r(t, T) is finite for finitet and 7. Suppose a 

nonmticipative shaping filter for r(t, 7 )  exists, having h(t, 7 )  88 its 
impulse mponse. Then 

Manuscript received August 1 1968. revised November 2 1968. This xwmwch 
WM partially nu ported by the N a t i o h  ABX~IK+~~W +I 6- Ad+nintnbtion 
under Qmt NgR-33-OO8490 and by the National Science Foundation under Q m t  GK-2283. filter. 

which relation i s  used below to determine a Stabfity property Of 



CORRESPONDENCE 

Stability of a system is defined here in the sense that, beginning 
from the zero state, any square-integrable input produces a bounded 
output. Stability in this sense will be abbreviated as GIB0  stability. 
This type of stability has not frequently been encountered in the 
linear system literature. However, if certain regularity conditions 
are imposed on the system coefficients or on the impulse responses, 
then L I B 0  stability is equivalent to the more familiar concept 
of bounded-input bounded-output (BIBO) stability [3], [4]. L I B 0  
stabfity is formally defined below. 

&$nition 1 
Let z(t, u) represent the zero-state response of a linear system to 

the input u(t) for to 5 t < m. The system is L I B 0  stable if and 
only if for MY u(t) staisfying 

[ r z ~ ' ( t )  dt 5 M o  < Q) 

for some finite Mol there exists another constant Mi (dependent 
upon M o )  such that Iz(t, u)I 5 MI < m for all t 2 to. 

A necessary and sufficient condition for GIB0  stability is estab- 
lished in the following theorem. 

T h m m  1 

if and only if 
A linear system with impulse response h(t, T )  is GIB0  stable 

1: ~ ( t ,  r )  d r  5 c < 03, 
Proof of SuJicimcy: Let u(t) satisfy 

for all t 2 to. 

1, u'(t) dt 5 M < Q). 

Then from the Schwarz inequality, 

Z V ,  4 = [[I M t ,  M T )  d r ] .  

I 1; h V ,  7) d r  1: u'(4 dr  

1: h V ,  7) dr 

5 C 1; u2(r) d r  I CM < Q) . 
Proof of Neussity: Let 

be unbounded. We will construct an input that produces an output 
exceeding any given bound. Let 

C(t) = +[I: h'(t, r )  dr]L", 

an unbounded function by assumption. Hence, for any M > 0 
there is a T > t o  such that C(T) > M. Holding T 88 a fixed param- 
eter, d e h e  a sequence of inputs as 

and note that 

for all T > to. The output z(t ,  UT) evaluated at t = T is given by 

383 
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z(T, uT) = 1. h'(T, r) /C(T) d r  = C(T) > M > 0. 

Since M may be chosen arbitrarily large, the system is not L I B 0  
stable. 

Stability of a shaping filter is guaranteed by uniform boundedness 
of the covariance function, as is now demonstrated. 

Theorem d 

Let a shaping filter for the covariance r(t, T )  exist' for all t 2 to. 
If r(t, t )  5 C < m for all t 2 f& the shaping filter is L I B 0  stable. 

Proof: From (3) 

r ( t ,  t )  = E[f'(t, to,  z0)3 + 1' 1 .  h2(t, dX. (4) 
Thus 

1: h'(t, X) dX 5 r ( t ,  t )  5 c < Q), 

which, from Theorem 1 , proves the assertion. 
Note that the results above remain valid in the limit 88 t o  ap- 

proaches - m .  Theorem 2 has a weak converse, which is proved 
below. This converse will be considered for two cases: finite t o ,  and 
the limiting case as to  approaches - m. For this purpose, it is con- 
venient to introduce the following three assumptions, which restrict 
the structure of systems in the class under consideration. 

S1-For any xo, tor and ti, there is an xi such that f ( t ,  to,  20) = 

C1-The system is completely controllable a t  t o  with respect to 
the parameter 2. That is, given any zi, there is a finite ti > t o  with 
ti independent of xi, such that the system may be transferred from 
the zero state at to to the zi state at ti by application of some finite 
energy input u(t) for t o  I t 5 II. 

C2-The system is uniformly completely controllable with reapect 
to z. That is, for any t and xi, there is a ti > t for which tl - t 2 T,  
with T independent of t and xi, such that the system may be trans- 
ferred from x = 0 at t to x = xi at ti by application of some bounded 
energy input u x . )  where the energy bound is independent of 1. 

f(t, ti, 21). 

Energy is to be defined 88 

E 1" u'(t) d t ;  

this definition therefore includes the possibility that u(t) represents 
a random p r o m  and xi a random variable. 

For finite differential systems, the usual definitions of complete 
and uniform complete controllability imply C1 and C2, respectively 
[6J Assumption Sl, expressing the state-variable nature of the 
parameter 2, is certainly satisfied by finite linear differential systems 
and is also satisfied, for example, by the class of infinite dimensional 
systems considered in [SI. 

The following result eatablishes the converse to Theorem 2 in 
the first w e ,  that is, when to is finite. 

Theorem S 
and satisfy 

Sl and C1. Then r(t, t )  is bounded for t 2 to if the shaping filter 
is L I B 0  atable. 

Proof: Assumptions Sl and C1 imply the existence of a finite t ~ ,  
an zi, and u(t) such that 

Let a shaping filter for r(t, T )  exist for all t 2 to > - 

I *  

f(4 t o ,  5 0 )  = f(t, t l ,  51) = 1. h(t, ')U(.) dr 

for all t 2 ti. The latter equality follows because f ( t ,  tl ,  zi) represents 
the output effect of the initial condition zl. From the Schwsrz 
inequality 
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hz(t, 7)  d r  1:' 4 7 )  d r  I C /" ~ ' ( 7 )  d r .  l: t .  

The last step follows from the stability hypothesis by Theorem 1. 
For random u( t),  we have 

E[f2(t, to ,  so)] 5: CE /" ~ ' ( 7 )  d r  < m 
t .  

for all t 2 tl, which implies from (4) that r(t, t )  is bounded for all 
t 2 tl. But by assumption, r(t, t )  is finite fort finite. Hence, r(t, t )  is 
bounded for all t 2 t* 

Assumption C1 is needed in the proof only to establish a bound 
on the transient response. If C1 is violated, the theorem is generally 
invalid. Consider for example the covariance r(t, 7 )  = Re('+.) with 
R > 0. A shaping filter may be realized as 

X(t) = 0 

Y ( 0  = d o e ' ,  
with z(t0) = 20, a zero-mean random variable for which E[z*] = R. 
The system is autonomous (thus it violates Cl), has an identically 
vanishing impulse response, and is certainly LJBO stable. However 

E[f'(t, to,  z,)] = Rezt, 
an unbounded function. This example presents one function in the 
class of covariance functions considered in [3], which lead to finite 
dimensional autonomous shaping filter realizations. 

We now establish a converse to Theorem 2 for the limiting case 
in which to approaches - =. 

' 

1 T h e m 4  
Let a shaping filter for r(t, 7 )  exist for all t. If the filter satisfies C2 

1) lim A EP(t, A, z)] = 0 for all t and 2. 

2) r(t, t )  is bounded for all t. 

Proof2 Assumption C2 implies that for any z and [, there exists a 

and is LIB0 stable, then 

h - m  

q(*) and X such that X - ( 5 T < m, and 

A 

f(t, A I  4 = J; h(t, .)ut(.) d r ,  

for all t 2 X. From the Schwars inequality, 

The stabbility hypothesis and Theorem 1 imply that 

[ h'(t, T)  d r  5 Lm h'(t, T) d r  

5 lm hz(t, 7)  dT 5 c < 

for all t, and C2 implies that 

E [u! ( r )  d r  5 M < 

for all E .  Hence 

ECfz((t, 1, Z)] 5 .hf SA h2(t, T) d7 5 hfc < 00 
- m  

for all 5 t, and 
lim ECf'(t, A, z)] = 0. 

This result in conjuction with (4) establishes the boundedness of 
r(t, t )  for all t (and thus the boundedness of r(t, 7 )  for all t and 7 since 
r(t, T) is a covariance.) 

The method used to bound the transient response in the proofe 
of Theorems 3 and 4 is also applicable to system subject to other 
stability criteria such as bounded-input bounded-output stability. 

We have shown above that inputroutput stability of a shaping 
filter known to exist may be determined directly from the output 
covariance function. Moreover, detailed knowledge of the impulse 
response (or state-variable equations) of the shaping filter is not 
required for the stability test. Since the results presented are inde- 
pendent of the dimension of the system, the shaping filter may 
contain distributed as well as lumped elements. 
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